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This study presents a machine learning (ML) approach to predict buckling failures in ballasted railway tracks, 

crucial for enhancing railway safety and reliability. By analysing extensive data from advanced numerical stud-

ies, sophisticated ML models are trained to detect failure patterns indicating potential buckling modes. The study 

uniquely incorporates temperature and track parameters, recognising their impact on snap-through and progres-

sive buckling. Various ML algorithms are evaluated for their effectiveness in simulated and real-world scenarios, 

demonstrating proficiency in identifying early signs of both snap-through and progressive buckling, leading to 

timely interventions. This capability not only improves railway safety but also aids in efficient maintenance 

scheduling and asset management. A case study in Thailand's railway system highlights the model's effectiveness 

and applicability in real-world scenario. Therefore, this research offers a novel method for predicting buckling 

failures, contributing significantly to safer and more efficient railway operations under varying environmental 

conditions.  

ABSTRACT 

METHODOLOGY 

1.Oversampling Technique 

The Synthetic Minority Over-Sampling Technique (SMOTE) is employed to rectify class imbalance within the 

dataset. This approach synthetically augments the minority class by interpolating new samples within the feature 

space. The process begins by randomly selecting a minority class sample "a," followed by identifying its k near-

est neighbours within the same class.  

Table 1 Proportion of data splitting after oversample 

2. Machine Learning Techniques 

In this paper, various machine learning methods are applied to assess their effectiveness in predicting the buck-

ling modes of ballasted railway tracks under temperature variations. We employ Python 3.11 for constructing 

models manually and for visualizing the results. Additionally, the K10-Fold Cross Validation technique is used 

for both training and validation.  6 machine learning techniques are listed below. 

 

RESULTS 

Data Split Data Instances 
Train-test-split 

ratio 

Class Split 

Non-buckling 
Snap-through 

buckling 
Progressive buck-

ling 
All Data 8,000 100% 3,693 3,693 3,693 
Training and vali-
dation sets 

8,862 80% 2,954 2,954 2,954 

Testing set 2,217 20% 739 739 739 

1.Logistic Regression 

2.K-Nearest Neighbor (KNN)  

3.Decision Tree (DT)  

4.Random Forest (RF)  

5. Light Gradient Boosting (LGBM)  

6. Extreme Gradient Boosting (XGB)  

3. Performance Measures 

To evaluate the performance of the models trained in this study, five statistical analyses were employed: Accura-

cy is a metric that captures the overall performance of the model, F1-Score which combines Precision and Recall 

by using harmonic mean, Precision  , Recall , and Cross Entropy often referred to “Log loss” measures the 

performance by quantifying the difference between predicted probabilities and the actual class labels. 

The importance of each parameter is assessed to gain 

insights into the behaviour of the model and to strate-

gize the maintenance and inspection plan for ballasted 

tracks. Figure 3 illustrates the feature importance of the 

trained XGBoost model. It reveals that lateral misa-

lignment, torsional resistance, and lateral displacement 

limit are the most significant factors, in that order. Lat-

eral misalignment plays a crucial role in track buck-

ling, especially in tangent track sections. This is due to 

the fact that lateral misalignment can introduce an ini-

tial curvature to a track section, providing the neces-

sary eccentricity for axial compression forces to induce 

track buckling. Torsional resistance is another vital fac-

tor influencing track buckling behaviour, along with 

lateral stiffness that composes of lateral displacement limit and lateral resistance. 

Buckling Mode Transition Diagram 
 

 

 

 

 

 

 

 

 

 

 

Figure 3 Buckling mode prediction considering initial lateral stiffness and sleeper’s displacement limit  

a) 0.5 mm b) 1 mm c) 2 mm 

Figure 3 illustrates the prediction of buckling modes, taking into account lateral resistance and the displacement 

limit of sleepers while keeping other parameters constant. These plots display a distinct boundary for each type 

of buckling. The boundary between the buckling and non-buckling areas corresponds to the maximum tempera-

ture that can be sustained before buckling occurs. It is evident that progressive buckling modes typically occur 

when lateral stiffness is low at lower temperatures. As the lateral displacement limit increases, leading to greater 

lateral resistance force, it becomes apparent that railway tracks are able to withstand higher temperatures, and the 

occurrence of snap-through buckling becomes more pronounced. 

On April 20, 2017, historical 

data indicates that the air tem-

perature was recorded at 36°C. 

Based on this, it was assumed 

that the rail temperature rose to 

56°C and the rail was buckled 

as shown in Figure 4. The pro-

posed model is utilised for 

analysis, setting several param-

eters based on above assump-

tions. Notably, the predicted 

temperature at which buckling 

occurs aligns closely with tem-

peratures recorded in real-world field conditions with only lower 

bound difference of 3.9% illustrated in Figure 5 

 

CONCLUSION 

This study has demonstrated the substantial potential of machine learning (ML) in enhancing the predictability of 

buckling failure modes in ballasted railway tracks. Through the deployment of various advanced ML algorithms, 

including Logistic Regression, Decision Tree, k-Nearest Neighbor, Random Forest and XGBoost, LGBM, we 

have successfully developed models that offer accurate predictions of track buckling behaviour under a range of 

conditions. The significant achievement of these models, especially the XGBoost algorithm which recorded an 

F1 score of 0.97, marks a pivotal advancement in the field of railway engineering. This outcome not only 

demonstrates the robustness of ML models in complex failure prediction but also opens new avenues for enhanc-

ing railway track safety and operational efficiency. We are the first to introduce a detailed analysis of the track 

buckling phases using ML models, taking into account a variety of different parameters. 
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Table 2 displays the performance of each machine learning model 

The preliminary model selected, as indicated in Table 2, is the XGBoost model. Based on this selection, the au-

thors proceeded to fine-tune and optimize the XGBoost model, building upon the preliminary version. The 

XGBoost model contains numerous hyperparameters. Figures 1-2 illustrate the confusion matrices for the 

XGBoost model on the training and testing datasets, respectively.  

Model 
Train set 

Precision Recall F1 score Cross Entropy Accuracy 
Logistic Regression 0.79 0.79 0.79 - 0.79 
k-Nearest Neighbor 0.88 0.87 0.87 - 0.87 
Decision Tree 1.00 1.00 1.00 - 1.00 
Random Forest 1.00 1.00 1.00 - 1.00 
LGBM 0.99 0.99 0.99 0.50 0.99 
XGBoost 0.99 0.99 0.99 0.38 0.99 

 

True Label (Train Data) 

Non-
Buckling 

Snap-
Through 
Buckling 

Progressive 
Buckling 

Prediction 
Label 

(Model 
Predic-
tion) 

Non-
Buckling 

2929 30 2 

Snap-
Through 
Buckling 

10 2932 0 

Progressive 2 0 2958 

 

RESULTS 

 

True Label (Test Data) 

Non-
Buckling 

Snap-
Through 
Buckling 

Progressive 
Buckling 

Prediction 
Label 

(Model 
Predic-

tion) 

Non-
Buckling 

710 19 3 

Snap-
Through 
Buckling 

25 726 0 

Progressive 3 1 729 

Figure 1 Train Data Figure 2 Test Data 

Figure 4 A case study in Thailand 
(Photo courtesy of State Railway of 
Thailand) 

Figure 5 Results of a case study using 
ML model. 


